10 research outputs found

    CHO microRNA engineering is growing up : recent successes and future challenges

    Get PDF
    microRNAs with their ability to regulate complex pathways that control cellular behavior and phenotype have been proposed as potential targets for cell engineering in the context of optimization of biopharmaceutical production cell lines, specifically of Chinese Hamster Ovary cells. However, until recently, research was limited by a lack of genomic sequence information on this industrially important cell line. With the publication of the genomic sequence and other relevant data sets for CHO cells since 2011, the doors have been opened for an improved understanding of CHO cell physiology and for the development of the necessary tools for novel engineering strategies. In the present review we discuss both knowledge on the regulatory mechanisms of microRNAs obtained from other biological models and proof of concepts already performed on CHO cells, thus providing an outlook of potential applications of microRNA engineering in production cell lines

    DNA methylation markers for oral pre-cancer progression: A critical review.

    Get PDF
    Although oral cancers are generally preceded by a well-established pre-cancerous stage, there is a lack of well-defined clinical and morphological criteria to detect and signal progression from pre-cancer to malignant tumours. We conducted a critical review to summarize the evidence regarding aberrant DNA methylation patterns as a potential diagnostic biomarker predicting progression. We identified all relevant human studies published in English prior to 30th April 2015 that examined DNA methylation (%) in oral pre-cancer by searching PubMed, Web-of-Science and Embase databases using combined key-searches. Twenty-one studies (18-cross-sectional; 3-longitudinal) were eligible for inclusion in the review, with sample sizes ranging from 4 to 156 affected cases. Eligible studies examined promoter region hyper-methylation of tumour suppressor genes in pathways including cell-cycle-control (n=15), DNA-repair (n=7), cell-cycle-signalling (n=4) and apoptosis (n=3). Hyper-methylated loci reported in three or more studies included p16, p14, MGMT and DAPK. Two longitudinal studies reported greater p16 hyper-methylation in pre-cancerous lesions transformed to malignancy compared to lesions that regressed (57-63.6% versus 8-32.1%; p<0.01). The one study that explored epigenome-wide methylation patterns reported three novel hyper-methylated loci (TRHDE; ZNF454; KCNAB3). The majority of reviewed studies were small, cross-sectional studies with poorly defined control groups and lacking validation. Whilst limitations in sample size and study design preclude definitive conclusions, current evidence suggests a potential utility of DNA methylation patterns as a diagnostic biomarker for oral pre-cancer progression. Robust studies such as large epigenome-wide methylation explorations of oral pre-cancer with longitudinal tracking are needed to validate the currently reported signals and identify new risk-loci and the biological pathways of disease progression

    Single nucleotide polymorphisms as markers of genetic susceptibility for oral potentially malignant disorders risk: Review of evidence to date

    Get PDF
    SummaryBackgroundOral cancers are preceded by oral potentially malignant disorders (OPMD). Understanding genetic susceptibility for OPMD risk could provide an opportunity for risk assessment of oral cancer through early disease course. We conducted a review of single nucleotide polymorphism (SNP) studies for OPMD risk.MethodsWe identified all relevant studies examining associations of SNPs with OPMD (leukoplakia, erythroplakia and oral sub-mucous fibrosis) conducted world-wide between January, 2000 and February, 2016 using a combined keyword search on PubMed. Of these, 47 studies that presented results as odds ratios and 95% CI were considered for full review.ResultsThe majority of eligible studies that explored candidate gene associations for OPMD were small (N<200 cases), limiting their scope to provide strong inference for any SNP identified to date in any population. Commonly studied SNPs were genes of carcinogen metabolism (n=18 studies), DNA repair (n=11 studies), cell cycle control (n=8 studies), extra-cellular matrix alteration (n=8 studies) and immune-inflammatory (n=6 studies) pathways. Based on significant associations as reported by two or more studies, suggestive markers included SNPs in GSTM1 (null), CCND1 (G870A), MMP3 (-1171; promotor region), TNFα (-308; rs800629), XPD (codon 751) and Gemin3 (rs197412) as well as in p53 (codon 72) in Indian populations. However, an equal or greater number of studies reported null or mixed associations for SNPs in GSTM1 (null), p53 (codon 72), XPD (codon 751), XRCC (rs25487 C/T), GSTT1 (null) and CYP1A1m1 (MspI site).ConclusionCandidate gene association studies have not yielded consistent data on risk loci for OPMD. High-throughput genotyping approaches for OPMD, with concurrent efforts for oral cancer, could prove useful in identifying robust risk-loci to help understand early disease course susceptibility for oral cancer

    Single nucleotide polymorphisms as markers of genetic susceptibility for oral potentially malignant disorders risk: Review of evidence to date.

    Get PDF
    BACKGROUND: Oral cancers are preceded by oral potentially malignant disorders (OPMD). Understanding genetic susceptibility for OPMD risk could provide an opportunity for risk assessment of oral cancer through early disease course. We conducted a review of single nucleotide polymorphism (SNP) studies for OPMD risk. METHODS: We identified all relevant studies examining associations of SNPs with OPMD (leukoplakia, erythroplakia and oral sub-mucous fibrosis) conducted world-wide between January, 2000 and February, 2016 using a combined keyword search on PubMed. Of these, 47 studies that presented results as odds ratios and 95% CI were considered for full review. RESULTS: The majority of eligible studies that explored candidate gene associations for OPMD were small (N<200 cases), limiting their scope to provide strong inference for any SNP identified to date in any population. Commonly studied SNPs were genes of carcinogen metabolism (n=18 studies), DNA repair (n=11 studies), cell cycle control (n=8 studies), extra-cellular matrix alteration (n=8 studies) and immune-inflammatory (n=6 studies) pathways. Based on significant associations as reported by two or more studies, suggestive markers included SNPs in GSTM1 (null), CCND1 (G870A), MMP3 (-1171; promotor region), TNF? (-308; rs800629), XPD (codon 751) and Gemin3 (rs197412) as well as in p53 (codon 72) in Indian populations. However, an equal or greater number of studies reported null or mixed associations for SNPs in GSTM1 (null), p53 (codon 72), XPD (codon 751), XRCC (rs25487 C/T), GSTT1 (null) and CYP1A1m1 (MspI site). CONCLUSION: Candidate gene association studies have not yielded consistent data on risk loci for OPMD. High-throughput genotyping approaches for OPMD, with concurrent efforts for oral cancer, could prove useful in identifying robust risk-loci to help understand early disease course susceptibility for oral cancer

    PLecDom: a program for identification and analysis of plant lectin domains

    Get PDF
    PLecDom is a program for detection of Plant Lectin Domains in a polypeptide or EST sequence, followed by a classification of the identified domains into known families. The web server is a collection of plant lectin domain families represented by alignments and profile Hidden Markov Models. PLecDom was developed after a rigorous analysis of evolutionary relationships between available sequences of lectin domains with known specificities. Users can test their sequences for potential lectin domains, catalog the identified domains into broad substrate classes, estimate the extent of divergence of new domains with existing homologs, extract domain boundaries and examine flanking sequences for further analysis. The high prediction accuracy of PLecDom combined with the ease with which it handles large scale input, enabled us to apply the program to protein and EST data from 48 plant genome-sequencing projects in various stages of completion. Our results represent a significant enrichment of the currently annotated plant lectins, and highlight potential targets for biochemical characterization. The search algorithm requires input in fasta format and is designed to process simultaneous connection requests from multiple users, such that huge sets of input sequences can be scanned in a matter of seconds. PLecDom is available at http://www.nipgr.res.in/plecdom.html

    PLecDom: a program for identification and

    No full text
    analysis of plant lectin domain

    A Snapshot of the Emerging Tomato Genome Sequence

    Get PDF
    The genome of tomato (Solanum lycopersicum L.) is being sequenced by an international consortium of 10 countries (Korea, China, the United Kingdom, India, the Netherlands, France, Japan, Spain, Italy, and the United States) as part of the larger \u201cInternational Solanaceae Genome Project (SOL): Systems Approach to Diversity and Adaptation\u201d initiative. The tomato genome sequencing project uses an ordered bacterial artificial chromosome (BAC) approach to generate a high-quality tomato euchromatic genome sequence for use as a reference genome for the Solanaceae and euasterids. Sequence is deposited at GenBank and at the SOL Genomics Network (SGN). Currently, there are around 1000 BACs finished or in progress, representing more than a third of the projected euchromatic portion of the genome. An annotation effort is also underway by the International Tomato Annotation Group. The expected number of genes in the euchromatin is 3c40,000, based on an estimate from a preliminary annotation of 11% of finished sequence. Here, we present this first snapshot of the emerging tomato genome and its annotation, a short comparison with potato (Solanum tuberosum L.) sequence data, and the tools available for the researchers to exploit this new resource are also presented. In the future, whole-genome shotgun techniques will be combined with the BAC-by-BAC approach to cover the entire tomato genome. The high-quality reference euchromatic tomato sequence is expected to be near completion by 2010
    corecore